123 research outputs found

    Lateral gene transfer between prokaryotes and multicellular eukaryotes: ongoing and significant?

    Get PDF
    The expansion of genome sequencing projects has produced accumulating evidence for lateral transfer of genes between prokaryotic and eukaryotic genomes. However, it remains controversial whether these genes are of functional importance in their recipient host. Nikoh and Nakabachi, in a recent paper in BMC Biology, take a first step and show that two genes of bacterial origin are highly expressed in the pea aphid Acyrthosiphon pisum. Active gene expression of transferred genes is supported by three other recent studies. Future studies should reveal whether functional proteins are produced and whether and how these are targeted to the appropriate compartment. We argue that the transfer of genes between host and symbiont may occasionally be of great evolutionary importance, particularly in the evolution of the symbiotic interaction itself

    Horizontal gene transfer in silkworm, Bombyx mori

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The domesticated silkworm, <it>Bombyx mori</it>, is the model insect for the order Lepidoptera, has economically important values, and has gained some representative behavioral characteristics compared to its wild ancestor. The genome of <it>B. mori </it>has been fully sequenced while function analysis of <it>BmChi-h </it>and <it>BmSuc1 </it>genes revealed that horizontal gene transfer (HGT) maybe bestow a clear selective advantage to <it>B. mori</it>. However, the role of HGT in the evolutionary history of <it>B. mori </it>is largely unexplored. In this study, we compare the whole genome of <it>B. mori </it>with those of 382 prokaryotic and eukaryotic species to investigate the potential HGTs.</p> <p>Results</p> <p>Ten candidate HGT events were defined in <it>B. mori </it>by comprehensive sequence analysis using Maximum Likelihood and Bayesian method combining with EST checking. Phylogenetic analysis of the candidate HGT genes suggested that one HGT was plant-to- <it>B. mori </it>transfer while nine were bacteria-to- <it>B. mori </it>transfer. Furthermore, functional analysis based on expression, coexpression and related literature searching revealed that several HGT candidate genes have added important characters, such as resistance to pathogen, to <it>B. mori</it>.</p> <p>Conclusions</p> <p>Results from this study clearly demonstrated that HGTs play an important role in the evolution of <it>B. mori </it>although the number of HGT events in <it>B. mori </it>is in general smaller than those of microbes and other insects. In particular, interdomain HGTs in <it>B. mori </it>may give rise to functional, persistent, and possibly evolutionarily significant new genes.</p

    Evolution of small putative group I introns in the SSU rRNA gene locus of Phialophora species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Group I introns (specifically subgroup IC1) are common in the nuclear ribosomal RNA genes of fungi. While most range in length from more than 200 to nearly 1800 nucleotides (nt) in length, several small putative (or degenerate) group I introns have been described that are between 56 and 81 nt. Although small, previously we demonstrated that the <it>Pa</it>SSU intron in the rRNA small subunit gene of <it>Phialophora americana </it>isolate Wang 1046 is capable of <it>in vitro </it>splicing using a standard group I intron pathway, thus qualifying it as a functional ribozyme.</p> <p>Findings</p> <p>Here, we describe eight short putative group I introns, ranging in length from 63 to 75 nt, in the rRNA small subunit genes of <it>Phialophora </it>isolates, a fungal genus that ranges from saprobic to pathogenic on plants and animals. All contain putative pairing regions P1, P7, and P10, as well as a pairing region formed between the middle of the intron and part of the 3' exon. The other pairing regions common in the core of standard group I introns are absent. However, parts of the 3' exon may aid in the stabilization of these small introns. Although the eight putative group I introns were from at least three species of <it>Phialophora</it>, phylogenetic analysis indicated that the eight are monophyletic. They are also monophyletic with the small introns of two lichen-forming fungi, <it>Porpidia crustulata </it>and <it>Arthonia lapidicola</it>.</p> <p>Conclusions</p> <p>The small putative group I introns in <it>Phialophora </it>have common features that may represent group I introns at their minima. They appear to have a single origin as indicated by their monophyly in phylogenetic analyses.</p

    Aphids acquired symbiotic genes via lateral gene transfer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aphids possess bacteriocytes, which are cells specifically differentiated to harbour the obligate mutualist <it>Buchnera aphidicola </it>(γ-Proteobacteria). <it>Buchnera </it>has lost many of the genes that appear to be essential for bacterial life. From the bacteriocyte of the pea aphid <it>Acyrthosiphon pisum</it>, we previously identified two clusters of expressed sequence tags that display similarity only to bacterial genes. Southern blot analysis demonstrated that they are encoded in the aphid genome. In this study, in order to assess the possibility of lateral gene transfer, we determined the full-length sequences of these transcripts, and performed detailed structural and phylogenetic analyses. We further examined their expression levels in the bacteriocyte using real-time quantitative RT-PCR.</p> <p>Results</p> <p>Sequence similarity searches demonstrated that these fully sequenced transcripts are significantly similar to the bacterial genes <it>ldcA </it>(product, LD-carboxypeptidase) and <it>rlpA </it>(product, rare lipoprotein A), respectively. <it>Buchnera </it>lacks these genes, whereas many other bacteria, including <it>Escherichia coli</it>, a close relative of <it>Buchnera</it>, possess both <it>ldcA </it>and <it>rlpA</it>. Molecular phylogenetic analysis clearly demonstrated that the aphid <it>ldcA </it>was derived from a rickettsial bacterium closely related to the extant <it>Wolbachia </it>spp. (α-Proteobacteria, Rickettsiales), which are intracellular symbionts of various lineages of arthropods. The evolutionary origin of <it>rlpA </it>was not fully resolved, but it was clearly demonstrated that its double-ψ β-barrel domain is of bacterial origin. Real-time quantitative RT-PCR demonstrated that <it>ldcA </it>and <it>rlpA </it>are expressed 11.6 and 154-fold higher in the bacteriocyte than in the whole body, respectively. LdcA is an enzyme required for recycling murein (peptidoglycan), which is a component of the bacterial cell wall. As <it>Buchnera </it>possesses a cell wall composed of murein but lacks <it>ldcA</it>, a high level of expression of the aphid <it>ldcA </it>in the bacteriocyte may be essential to maintain <it>Buchnera</it>. Although the function of RlpA is not well known, conspicuous up-regulation of the aphid <it>rlpA </it>in the bacteriocyte implies that this gene is also essential for <it>Buchnera</it>.</p> <p>Conclusion</p> <p>In this study, we obtained several lines of evidence indicating that aphids acquired genes from bacteria via lateral gene transfer and that these genes are used to maintain the obligately mutualistic bacterium, <it>Buchnera</it>.</p

    Phylogenomic Analysis of Odyssella thessalonicensis Fortifies the Common Origin of Rickettsiales, Pelagibacter ubique and Reclimonas americana Mitochondrion

    Get PDF
    Background: The evolution of the Alphaproteobacteria and origin of the mitochondria are topics of considerable debate. Most studies have placed the mitochondria ancestor within the Rickettsiales order. Ten years ago, the bacterium Odyssella thessalonicensis was isolated from Acanthamoeba spp., and the 16S rDNA phylogeny placed it within the Rickettsiales. Recently, the whole genome of O. thessalonicensis has been sequenced, and 16S rDNA phylogeny and more robust and accurate phylogenomic analyses have been performed with 65 highly conserved proteins. Methodology/Principal Findings: The results suggested that the O. thessalonicensis emerged between the Rickettsiales and other Alphaproteobacteria. The mitochondrial proteins of the Reclinomonas americana have been used to locate the phylogenetic position of the mitochondrion ancestor within the Alphaproteobacteria tree. Using the K tree score method, nine mitochondrion-encoded proteins, whose phylogenies were congruent with the Alphaproteobacteria phylogenomic tree, have been selected and concatenated for Bayesian and Maximum Likelihood phylogenies. The Reclinomonas americana mitochondrion is a sister taxon to the free-living bacteria Candidatus Pelagibacter ubique, and together, they form a clade that is deeply rooted in the Rickettsiales clade. Conclusions/Significance: The Reclinomonas americana mitochondrion phylogenomic study confirmed that mitochondri

    Endosymbiont DNA in Endobacteria-Free Filarial Nematodes Indicates Ancient Horizontal Genetic Transfer

    Get PDF
    Background: Wolbachia are among the most abundant symbiotic microbes on earth; they are present in about 66% of all insect species, some spiders, mites and crustaceans, and most filarial nematode species. Infected filarial nematodes, including many pathogens of medical and veterinary importance, depend on Wolbachia for proper development and survival. The mechanisms behind this interdependence are not understood. Interestingly, a minority of filarial species examined to date are naturally Wolbachia-free. Methodology/PrincipalFindings:We used 454 pyrosequencing to survey the genomes of two distantly related Wolbachia- free filarial species, Acanthocheilonema viteae and Onchocerca flexuosa. This screen identified 49 Wolbachia-like DNA sequences in A. viteae and 114 in O. flexuosa. qRT-PCR reactions detected expression of 30 Wolbachia-like sequences in A. viteae and 56 in O. flexuosa. Approximately half of these appear to be transcribed from pseudogenes. In situ hybridization showed that two of these pseudogene transcripts were specifically expressed in developing embryos and testes of both species. Conclusions/Significance: These results strongly suggest that the last common ancestor of extant filarial nematodes was infected with Wolbachia and that this former endosymbiont contributed to their genome evolution. Horizontally transferred Wolbachia DNA may explain the ability of some filarial species to live and reproduce without the endosymbiont while other species cannot

    Culex pipiens development is greatly influenced by native bacteria and exogenous yeast

    Get PDF
    Culex pipiens is the most cosmopolitan mosquito of the Pipiens Assemblage. By studying the nature of interactions between this species and microorganisms common to its breeding environment we can unravel important pitfalls encountered during development. We tested the survival rate of larval stages, pupae and adults of a Cx. pipiens colony exposed to a variety of microorganisms in laboratory conditions and assessed the transmission to offspring (F1) by those organisms that secured development up to adulthood. Three complementary experiments were designed to: 1) explore the nutritional value of yeasts and other microorganisms during Cx. pipiens development; 2) elucidate the transstadial transmission of yeast to the host offspring; and 3) to examine the relevance of all these microorganisms in female choice for oviposition-substratum. The yeast Saccharomyces cerevisiae proved to be the most nutritional diet, but despite showing the highest survival rates, vertical transmission to F1 was never confirmed. In addition, during the oviposition trials, none of the gravid females was attracted to the yeast substratum. Notably, the two native bacterial strains, Klebsiella sp. and Aeromonas sp., were the preferred oviposition media, the same two bacteria that managed to feed neonates until molting into 2nd instar larvae. Our results not only suggest that Klebsiella sp. or Aeromonas sp. serve as attractants for oviposition habitat selection, but also nurture the most fragile instar, L1, to assure molting into a more resilient stage, L2, while yeast proves to be the most supportive diet for completing development. These experiments unearthed survival traits that might be considered in the future development of strategies of Cx. pipiens control. These studies can be extended to other members of the Pipiens Assemblag

    Wolbachia in butterflies and moths: geographic structure in infection frequency.

    Get PDF
    INTRODUCTION: Butterflies and moths (Lepidoptera) constitute one of the most diverse insect orders, and play an important role in ecosystem function. However, little is known in terms of their bacterial communities. Wolbachia, perhaps the most common and widespread intracellular bacterium on Earth, can manipulate the physiology and reproduction of its hosts, and is transmitted vertically from mother to offspring, or sometimes horizontally between species. While its role in some hosts has been studied extensively, its incidence across Lepidoptera is poorly understood. A recent analysis using a beta-binomial model to infer the between-species distribution of prevalence estimated that approximately 40 % of arthropod species are infected with Wolbachia, but particular taxonomic groups and ecological niches seem to display substantially higher or lower incidences. In this study, we took an initial step and applied a similar, maximum likelihood approach to 300 species of Lepidoptera (7604 individuals from 660 populations) belonging to 17 families and 10 superfamilies, and sampled from 36 countries, representing all continents excluding Antarctica. RESULTS: Approximately a quarter to a third of individuals appear to be infected with Wolbachia, and around 80 % of Lepidoptera species are infected at a non-negligible frequency. This incidence estimate is very high compared to arthropods in general. Wolbachia infection in Lepidoptera is shown to vary between families, but there is no evidence for closely related groups to show similar infection levels. True butterflies (Papilionoidea) are overrepresented in our data, however, our estimates show this group can be taken as a representative for the other major lepidopteran superfamilies. We also show substantial variation in infection level according to geography - closer locations tend to show similar infection levels. We further show that variation in geography is due to a latitudinal gradient in Wolbachia infection, with lower frequencies towards higher latitudes. CONCLUSIONS: Our comprehensive survey of Wolbachia infection in Lepidoptera suggests that infection incidence is very high, and provides evidence that climate and geography are strong predictors of infection frequency.We thank the McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History for their continued support. This study was supported by the University of Florida Research Opportunity Seed Fund (ROSF) and the National Science Foundation grant number DEB-1354585 to AYK.This is the final published version. It first appeared at http://link.springer.com/article/10.1186%2Fs12983-015-0107-z

    Red and Green Algal Origin of Diatom Membrane Transporters: Insights into Environmental Adaptation and Cell Evolution

    Get PDF
    Membrane transporters (MTs) facilitate the movement of molecules between cellular compartments. The evolutionary history of these key components of eukaryote genomes remains unclear. Many photosynthetic microbial eukaryotes (e.g., diatoms, haptophytes, and dinoflagellates) appear to have undergone serial endosymbiosis and thereby recruited foreign genes through endosymbiotic/horizontal gene transfer (E/HGT). Here we used the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum as models to examine the evolutionary origin of MTs in this important group of marine primary producers. Using phylogenomics, we used 1,014 diatom MTs as query against a broadly sampled protein sequence database that includes novel genome data from the mesophilic red algae Porphyridium cruentum and Calliarthron tuberculosum, and the stramenopile Ectocarpus siliculosus. Our conservative approach resulted in 879 maximum likelihood trees of which 399 genes show a non-lineal history between diatoms and other eukaryotes and prokaryotes (at the bootstrap value ≥70%). Of the eukaryote-derived MTs, 172 (ca. 25% of 697 examined phylogenies) have members of both red/green algae as sister groups, with 103 putatively arising from green algae, 19 from red algae, and 50 have an unresolved affiliation to red and/or green algae. We used topology tests to analyze the most convincing cases of non-lineal gene history in which red and/or green algae were nested within stramenopiles. This analysis showed that ca. 6% of all trees (our most conservative estimate) support an algal origin of MTs in stramenopiles with the majority derived from green algae. Our findings demonstrate the complex evolutionary history of photosynthetic eukaryotes and indicate a reticulate origin of MT genes in diatoms. We postulate that the algal-derived MTs acquired via E/HGT provided diatoms and other related microbial eukaryotes the ability to persist under conditions of fluctuating ocean chemistry, likely contributing to their great success in marine environments
    corecore